This tutorial demonstrates how to perform molecular dynamics (MD) simulations to study dislocation motion in oxides materials. By completing this tutorial, you will learn:
1. How to create dislocation structures in crystal lattices
2. Energy minimization techniques for dislocation configurations
3. Equilibrium MD simulations for relaxed dislocation structures
4. Shear deformation simulations to observe dislocation motion
5. Analysis of stress-strain response
Dislocations are line defects in crystals that enable plastic deformation. We'll create an edge dislocation in a SrTiO3 iron crystal using the following approach:
Crystal orientation: X=[110], Y=[001], Z=[1-10]
Dislocation line along Y-direction
Burgers vector: b = -a/2[110]
### PROGRAM PARAMETERS
units metal
### DEFINE AND CREATE SIMULATION BOX
atom_style atomic
##Boundary conditions (p=periodic,f=fixed)
boundary p p p
#variable Temp equal 300 # desired temperature
variable tstp equal 0.001 # timestep
variable tdamp equal 100*${tstp} # damping parameters #
variable pdamp equal 1000*${tstp} # for NPT ensemble #
variable dump_every equal 100
#variable equi_step equal 10000
# 输入STO-dislocation模型
read_data conf.lmp
#change_box all triclinic
mass 1 24.305000
mass 2 15.999000
### ATOMS/IONS PROPERTIES
pair_style deepmd SPTO.pb
pair_coeff * *
#--------------------------------------------- Minimization ---------------------------------------
thermo 10
timestep ${tstp}
dump 1 all custom 10 STO-mini.lmp id type element x y z
dump_modify 1 sort id element Sr Pb Ti O
min_style cg
minimize 1e-15 1e-15 10000 10000
### LAMMPS input file
### SrTiO3 - Thomas potential
### PROGRAM PARAMETERS
units metal
### DEFINE AND CREATE SIMULATION BOX
atom_style atomic
##Boundary conditions (p=periodic,f=fixed)
boundary p p p
# 输入STO-dislocation模型
read_data conf.lmp
#change_box all triclinic
mass 1 87.620000
mass 2 207.200000
mass 3 47.867000
mass 4 15.999000
### ATOMS/IONS PROPERTIES
pair_style deepmd SPTO.pb
pair_coeff * *
#------------------------------------------ shear ----------------------------
#模拟变量设置
variable temp equal 300
variable timestep equal 0.001
variable shear_speed equal 1
variable shear_step equal 100000
#compute s all stress/atom NULL
#compute p all reduce sum c_s[1] c_s[2] c_s[3]
#variable Press equal -(c_p[1]+c_p[2]+c_p[3])/(3*vol)
#分组
region box block INF INF INF INF INF INF units box
group box region box
region upper block INF INF INF INF 170 INF units box
region lower block INF INF INF INF INF 40 units box
group lower region lower
group upper region upper
group boundary union upper lower
group mobile subtract box boundary
change_box all boundary p p f
#剪切:固定lower; mobile使用nvt系综; upper使用fix move加载
timestep ${timestep}
thermo 10
thermo_style custom step temp etotal press pe
dump 1 all custom 10 2shear.xyz id type element x y z
dump_modify 1 sort id element Sr Pb Ti O
velocity lower set 0.0 0.0 0.0
fix 1 lower setforce 0 0 0
fix 2 mobile nvt temp ${temp} ${temp} 0.1
fix 3 upper move linear ${shear_speed} 0 0 units box
run ${shear_step}
Using OVITO software to visualize the atomic structure containing dislocations, the obtained dislocation configuration is shown in the figure below. This visualization clearly reveals the characteristic features of the dislocation line, including its core structure, surrounding strain fields, and the distortion of crystal planes around the defect. The analysis further enables the identification of quantification of local atomic displacements, providing crucial insights into the defect's influence on material properties and deformation behavior.